library(coronavirusbrazil) data("spatial_rj_neighborhoods") head(spatial_rj_neighborhoods) #> neighborhood cases Ordem deaths lat lon AP Extra_int1 #> 1 ABOLICAO 5 5 0 -22.88580 -43.29948 3.2 70 #> 2 ACARI 2 2 0 -22.82218 -43.34120 3.3 111 #> 3 AGUA SANTA 0 0 0 -22.91104 -43.31150 3.2 67 #> 4 ALTO DA BOA VISTA 3 3 0 -22.96063 -43.26083 2.2 34 #> 5 ANCHIETA 14 14 0 -22.82297 -43.39875 3.3 107 #> 6 ANDARAI 9 9 0 -22.92911 -43.25342 2.2 37 #> Extra_int2 Extra_txt ObjectId geoms log_cases log_deaths #> 1 0 0 1 -43.29948, -22.88580 0.6989700 -Inf #> 2 0 0 2 -43.34120, -22.82218 0.3010300 -Inf #> 3 0 0 3 -43.31150, -22.91104 -Inf -Inf #> 4 0 0 4 -43.26083, -22.96063 0.4771213 -Inf #> 5 0 0 5 -43.39875, -22.82297 1.1461280 -Inf #> 6 0 0 6 -43.25342, -22.92911 0.9542425 -Inf
mapview::mapview(spatial_rj_neighborhoods %>% dplyr::filter(lon < -30), map = leaflet::leaflet() %>% leaflet::addTiles(), zcol="cases", cex="cases", layer.name="Casos", label=paste0(spatial_rj_neighborhoods$neighborhood, ": ", spatial_rj_neighborhoods$cases))